Friday, July 6, 2012

Android Development Tutorial


Android Development Tutorial

Based on Android 4.0

Lars Vogel

Version 10.4
28.06.2012
Revision History
Revision 0.1 04.07.2009
Created
Revision 0.2 - 10.4 07.07.2009 - 28.06.2012
bug fixing and enhancements
Development with Android and Eclipse
This tutorial describes how to create Android applications with Eclipse. It is based on Eclipse 3.7 (Indigo), Java 1.6 and Android 4.0 (Ice Cream Sandwich).

Table of Contents
1. What is Android?
1.1. Android Operation System
1.2. Google Play (Android Market)
1.3. Security and permissions
2. Android components
2.1. Activity
2.2. Views and ViewGroups
2.3. Intents
2.4. Services
2.5. ContentProvider
2.6. BroadcastReceiver
2.7. (HomeScreen) Widgets
2.8. Other
3. Android Development Tools
3.1. Android SDK
3.2. Android Development Tools
3.3. Dalvik Virtual Machine
3.4. How to develop Android Applications
3.5. Resource editors
4. Android Application Architecture
4.1. AndroidManifest.xml
4.2. R.java and Resources
4.3. Assets
4.4. Activities and Layouts
4.5. Reference to resources in XML files
4.6. Activities and Lifecycle
4.7. Configuration Change
4.8. Context
5. Installation
5.1. Eclipse
5.2. Pre-requisites for using a 64bit Linux
5.3. Install ADT Plug-ins and Android SDK
5.4. Manual installation of the Android SDK
5.5. Install a specific Android version
5.6. Android Source Code
6. Android virtual device - Emulator
6.1. What is the Android Emulator?
6.2. Google vs. Android AVD
6.3. Emulator Shortcuts
6.4. Performance
6.5. Hardware button
7. Tutorial: Create and run Android Virtual Device
8. Error handling and typical problems
8.1. Clean Project
8.2. Problems with Android Debug Bridge (adb)
8.3. LogCat
8.4. Java7
8.5. Eclipse reports file from R.java as missing
8.6. Android editor not opened
8.7. Emulator does not start
8.8. Timeout during deployment
8.9. Installation failed due to insufficient storage
8.10. Debug Certificate expired
8.11. Error message for @Override
8.12. Missing Imports
9. Conventions for the tutorials
9.1. API version, package and application name
9.2. Warning messages for Strings
10. Tutorial: Your first Android project
10.1. Install the demo application
10.2. Create Project
10.3. Modifying resources
10.4. Create attributes
10.5. Add Views
10.6. Edit View properties
10.7. Change the Activity source code
10.8. Start Project
11. Starting an installed application
12. OptionMenu and ActionBar
12.1. ActionBar
12.2. OptionsMenu
12.3. Creating the menu
12.4. Reacting to menu entry selection
12.5. Using the home icon
12.6. ActionBar tabs
12.7. Custom Views in the ActionBar
12.8. Contextual action mode
12.9. Context menus
13. Tutorial: ActionBar
13.1. Project
13.2. Add a menu XML resource
14. Tutorial: Using the contextual action mode
15. Layout Manager and ViewGroups
15.1. Available Layout Manager
15.2. LinearLayout
15.3. RelativeLayout
15.4. GridLayout
15.5. ScrollView
16. Tutorial: ScrollView
17. Fragments
17.1. Fragments Overview
17.2. When to use Fragments
18. Fragments Tutorial
18.1. Overview
18.2. Create project
18.3. Create layouts for portrait mode
18.4. Create Fragment classes
18.5. Create layouts for landscape mode
18.6. Activities
18.7. Run
19. ActionBar navigation with Fragments
20. DDMS perspective and important views
20.1. DDMS - Dalvik Debug Monitor Server
20.2. LogCat View
20.3. File explorer
21. Shell
21.1. Android Debugging Bridge - Shell
21.2. Uninstall an application via adb
21.3. Emulator Console via telnet
22. Deployment
22.1. Overview
22.2. Deployment via Eclipse
22.3.
22.4. Via external sources
22.5. Google Play (Market)
23. Thank you
24. Questions and Discussion
25. Links and Literature
25.1. Source Code
25.2. Android Resources
25.3. vogella Resources

1. What is Android?

1.1. Android Operation System

Android is an operating system based on Linux with a Java programming interface.
The Android Software Development Kit (Android SDK) provides all necessary tools to develop Android applications. This includes a compiler, debugger and a device emulator, as well as its own virtual machine to run Android programs.
Android is currently primarily developed by Google.
Android allows background processing, provides a rich user interface library, supports 2-D and 3-D graphics using the OpenGL libraries, access to the file system and provides an embedded SQLite database.
Android applications consist of different components and can re-use components of other applications. This leads to the concept of a task in Android; an application can re-use other Android components to archive a task.
For example you can write an application which use the Android Gallery application to pick a photo.

1.2. Google Play (Android Market)

Google offers the Google Play service in which programmers can offer their Android application to Android users. Google phones include the Google Play application which allows to install applications.
Google Play also offers an update service, e.g. if a programmer uploads a new version of his application to Google Play, this service will notify existing users that an update is available and allow to install it.
Google Play used to be called Android Market.

1.3. Security and permissions

During deployment on an Android device, the Android system will create a unique user and group ID for every Android application. Each application file is private to this generated user, e.g. other applications cannot access these files.
In addition each Android application will be started in its own process.
Therefore by means of the underlying Linux operating system, every Android application is isolated from other running applications.
If data should be shared, the application must do this explicitly, e.g. via a Service or a ContentProvider.
Android also contains a permission system. Android predefines permissions for certain tasks but every application can define additional permissions.
An Android application declare its required permissions in its AndroidManifest.xml configuration file.For example an application may declare that it requires Internet
Permissions have different levels. Some permissions are automatically granted by the Android system, some are automatically rejected.
In most cases the requested permissions will be presented to the user before installation of the application. The user needs to decide if these permissions are given to the application.
If the user denies a permission required by the application, this application cannot be installed. The check of the permission is only performed during installation, permissions cannot be denied or granted after the installation.
Not all users pay attention to the required permissions during installation. But some users do and they write negative reviews on Google Play.

2. Android components

The following gives a short overview of the most important Android components.

2.1. Activity

An Activity represents the presentation layer of an Android application. A simplified description is that an Activity represents a screen in your Android application. This is slightly incorrect as Activities can be displayed as dialogs or can be transparent.
An Android application can have several Activities.

2.2. Views and ViewGroups

Views are user interface widgets, e.g. buttons or text fields. The base class for all Views is the android.view.View class. Views have attributes which can be used to configure their appearance and behavior.
A ViewGroup is responsible for arranging other Views. ViewGroups is also called layout managers. The base class for these layout managers is the android.view.ViewGroup class which extends the View class.
ViewGroups can be nestled to create complex layouts. You should not nestle ViewGroups too deeply as this has a negative impact on the performance.

2.3. Intents

Intents are asynchronous messages which allow the application to request functionality from other components of the Android system, e.g. from Services or Activities. An application can call a component directly (explicit Intent) or ask the Android system to evaluate registered components based on the Intent data (implicit Intents ). For example the application could implement sharing of data via an Intent and all components which allow sharing of data would be available for the user to select. Applications register themselves to an Intent via an IntentFilter.
Intents allow to combine loosely coupled components to perform certain tasks.

2.4. Services

Services perform background tasks without providing a user interface. They can notify the user via the notification framework in Android.

2.5. ContentProvider

A ContentProvider provides a structured interface to application data. Via a ContentProvider your application can share data with other applications. Android contains an SQLite database which is frequently used in conjunction with a ContentProvider. The SQLite database would store the data, which would be accessed via the ContentProvider.

2.6. BroadcastReceiver

BroadcastReceiver can be registered to receive system messages and Intents. A BroadcastReceiver will get notified by the Android system, if the specified situation happens. For example a BroadcastReceiver could get called once the Android system completed the boot process or if a phone call is received.

2.7. (HomeScreen) Widgets

Widgets are interactive components which are primarily used on the Android homescreen. They typically display some kind of data and allow the user to perform actions via them. For example a Widget could display a short summary of new emails and if the user selects an email, it could start the email application with the selected email.

2.8. Other

Android provide many more components but the list above describes the most important ones. Other Android components are Live Folders and Live Wallpapers . Live Folders display data on the homescreen without launching the corresponding application while Live Wallpapers allow to create annimated backgrounds.

3. Android Development Tools

3.1. Android SDK

The Android Software Development Kit (SDK) contains the necessary tools to create, compile and package Android application. Most of these tools are command line based.
The Android SDK also provides an Android device emulator, so that Android applications can be tested without a real Android phone. You can create Android virtual devices (AVD) via the Android SDK, which run in this emulator.
The Android SDK contains the Android debug bridge (adb) tool which allows to connect to an virtual or real Android device.

3.2. Android Development Tools

Google provides the Android Development Tools (ADT) to develop Android applications with Eclipse. ADT is a set of components (plug-ins) which extend the Eclipse IDE with Android development capabilities.
ADT contains all required functionalities to create, compile, debug and deploy Android applications from the Eclipse IDE. ADT also allows to create and start AVDs.

3.3. Dalvik Virtual Machine

The Android system uses a special virtual machine, i.e. the Dalvik Virtual Machine to run Java based applications. Dalvik uses an own bytecode format which is different from Java bytecode.
Therefore you cannot directly run Java class files on Android, they need to get converted in the Dalvik bytecode format.

3.4. How to develop Android Applications

Android applications are primarily written in the Java programming language. The Java source files are converted to Java class files by the Java compiler.
The Android SDK contains a tool called dx which converts Java class files into a .dex (Dalvik Executable) file. All class files of one application are placed in one compressed .dex file. During this conversion process redundant information in the class files are optimized in the .dex file. For example if the same String is found in different class files, the .dex file contains only once reference of this String.
These dex files are therefore much smaller in size than the corresponding class files.

The .dex file and the resources of an Android project, e.g. the images and XML files, are packed into an .apk (Android Package) file. The program aapt (Android Asset Packaging Tool) performs this packaging.
The resulting .apk file contains all necessary data to run the Android application and can be deployed to an Android device via the adb tool.
The Android Development Tools (ADT) performs these steps transparently to the user.
If you use the ADT tooling you press a button the whole Android application (.apk file) will be created and deployed.

3.5. Resource editors

The ADT allows the developer to define certain artifacts, e.g. Strings and layout files, in two ways: via a rich editor, and directly via XML. This is done via multi-page editors in Eclipse. In these editors you can switch between both representations by clicking on the tab on the lower part of the screen.
For example if you open the res/layout/main.xml file in the Package Explorer View of Eclipse, you can switch between the two representations as depicted in the following screenshot.

ADT Resource Editor

4. Android Application Architecture

4.1. AndroidManifest.xml

The components and settings of an Android application are described in the AndroidManifest.xml file. For example all Activities and Services of the application must be declared in this file.
It must also contain the required permissions for the application. For example if the application requires network access it must be specified here.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
      package="de.vogella.android.temperature"
      android:versionCode="1"
      android:versionName="1.0">
    <application android:icon="@drawable/icon" android:label="@string/app_name">
        <activity android:name=".Convert"
                  android:label="@string/app_name">
            <intent-filter>
                <action android:name="android.intent.action.MAIN" />
                <category android:name="android.intent.category.LAUNCHER" />
            </intent-filter>
        </activity>

    </application>
    <uses-sdk android:minSdkVersion="9" />

</manifest> 

The package attribute defines the base package for the Java objects referred to in this file. If a Java object lies within a different package, it must be declared with the full qualified package name.
Google Play requires that every Android application uses its own unique package. Therefore it is a good habit to use your reverse domain name as package name. This will avoid collisions with other Android applications.
android:versionName and android:versionCode specify the version of your application. versionName is what the user sees and can be any String.
versionCode must be an integer. The Android Market determine based on the versionCode, if it should perform an update of the applications for the existing installations. You typically start with "1" and increase this value by one, if you roll-out a new version of your application.
The <activity> tag defines an Activity, in this example pointing to the Convert class in the de.vogella.android.temperature package. An intent filter is registered for this class which defines that this Activity is started once the application starts (action android:name="android.intent.action.MAIN" ). The category definition category android:name="android.intent.category.LAUNCHER" defines that this application is added to the application directory on the Android device.
The @string/app_name value refers to resource files which contain the actual value of the application name. The usage of resource file makes it easy to provide different resources, e.g. strings, colors, icons, for different devices and makes it easy to translate applications.
The uses-sdk part of the AndroidManifest.xml file defines the minimal SDK version for which your application is valid. This will prevent your application being installed on unsupported devices.

4.2. R.java and Resources

The gen directory in an Android project contains generated values. R.java is a generated class which contains references to certain resources of the project.
These resources must be defined in the res directory and can be XML files, icons or pictures. You can for example define values, menus, layouts or animations via XML files.
If you create a new resource, the corresponding reference is automatically created in R.java via the Eclipse ADT tools. These references are static integer values and define IDs for the resources.
The Android system provides methods to access the corresponding resource via these IDs.
For example to access a String with the R.string.yourString ID, you would use the getString(R.string.yourString)) method.
R.java is automatically created by the Eclipse development environment, manual changes are not necessary and will be overridden by the tooling.

4.3. Assets

While the res directory contains structured values which are known to the Android platform, the assets directory can be used to store any kind of data. You access this data via the AssetsManager which you can access the getAssets() method.
AssetsManager allows to read an assets as InputStream with the open() method.

// Get the AssetManager
AssetManager manager = getAssets();

// Read a Bitmap from Assets
try {
 InputStream open = manager.open("logo.png");
 Bitmap bitmap = BitmapFactory.decodeStream(open);
 // Assign the bitmap to an ImageView in this layout
 ImageView view = (ImageView) findViewById(R.id.imageView1);
 view.setImageBitmap(bitmap);
} catch (IOException e) {
 e.printStackTrace();
} 

4.4. Activities and Layouts

The user interface for Activities is defined via layouts. The layout defines the included Views (widgets) and their properties.
A layout can be defined via Java code or via XML. In most cases the layout is defined as an XML file.
XML based layouts are defined via a resource file in the /res/layout folder. This file specifies the ViewGroups, Views, their relationship and their attributes for this specific layout.
If a View needs to be accessed via Java code, you have to give the View a unique ID via the android:id attribute. To assign a new ID to a View use @+id/yourvalue . The following shows an example in which a Button gets the button1 ID assigned.

<Button
 android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Show Preferences" >
</Button> 

By conversion this will create and assign a new yourvalue ID to the corresponding View. In your Java code you can later access a View via the method findViewById(R.id.yourvalue).
Defining layouts via XML is usually the preferred way as this separates the programming logic from the layout definition. It also allows the definition of different layouts for different devices. You can also mix both approaches.

4.5. Reference to resources in XML files

In your XML files, for example your layout files, you can refer to other resources via the @ sign.
For example, if you want to refer to a color which is defined in a XML resource, you can refer to it via @color/your_id. Or if you defined a "hello" string in an XML resource, you could access it via @string/hello.

4.6. Activities and Lifecycle

The Android system controls the lifecycle of your application. At any time the Android system may stop or destroy your application, e.g. because of an incoming call. The Android system defines a lifecycle for Activities via predefined methods. The most important methods are:
  • onSaveInstanceState() - called after the Activity is stopped. Used to save data so that the Activity can restore its states if re-started
  • onPause() - always called if the Activity ends, can be used to release resource or save data
  • onResume() - called if the Activity is re-started, can be used to initialize fields

4.7. Configuration Change

An Activity will also be restarted, if a so called "configuration change" happens. A configuration change happens if an event is triggered which may be relevant for the application. For example if the user changes the orientation of the device (vertically or horizontally). Android assumes that an Activity might want to use different resources for these orientations and restarts the Activity.
In the emulator you can simulate the change of the orientation via Ctrl+F11.
You can avoid a restart of your application for certain configuration changes via the configChanges attribute on your Activity definition in your AndroidManifest.xml. The following Activity will not be restarted in case of orientation changes or position of the physical keyboard (hidden / visible).

<activity android:name=".ProgressTestActivity"
     android:label="@string/app_name"
     android:configChanges="orientation|keyboardHidden|keyboard">
</activity> 

4.8. Context

The class android.content.Context provides the connection to the Android system and the resources of the project. It is the interface to global information about the application environment.
The Context also provides access to Android Services, e.g. the Location Service.
Activities and Services extend the Context class.

5. Installation

5.1. Eclipse

The following assumes that you have already Java and Eclipse installed and know how to use Eclipse. For an introduction into Eclipse please see the following tutorial: Eclipse IDE Tutorial.
The tutorial above also describes how to install new components into Eclipse. This is required to install the Android Development Tools. You find the necessary steps described in the following section of the tutorial: Eclipse Update Manager.
The author of this text has also published a Kindle book on the usage of the Eclipse IDE, which can be found here: Eclipse IDE Book for Kindle.

5.2. Pre-requisites for using a 64bit Linux

The Android SDK is 32bit, therefore on a 64bit Linux system you need to have the package ia32-libs installed. For Ubuntu you can do this via the following command.

apt-get install ia32-libs 
Please check your distribution documentation, if you are using a different flavor of Linux.

5.3. Install ADT Plug-ins and Android SDK

Use the Eclipse update manager to install all available components for the Android Development Tools (ADT) from the URL https://dl-ssl.google.com/android/eclipse/.
After the new Android development components are installed, you will be prompted to install the Android SDK. You can use the following wizard or go to the next section to learn how to do it manually.

Wizard to install Android SDK - Part 1


Wizard to install Android SDK - Part 2


Wizard to install Android SDK - Part 3

5.4. Manual installation of the Android SDK

After the installation of the ADT the Eclipse tooling allows to download the Android SDK automatically. Alternatively you can also manually download the Android SDK from the Android SDK download page.
The download contains a zip file, which you can extract to any place in your file system, e.g. on my Linux system I placed it under "/home/vogella/android-sdks". Avoid using spaces in the path name, otherwise you may experience problems with the usage of the Android SDK.
You also have to define the location of the Android SDK in the Eclipse Preferences. In Eclipse open the Preferences dialog via the menu WindowsPreferences. Select Android and enter the installation path of the Android SDK.

Setting up the Android SDK in the Eclipse Preferences

5.5. Install a specific Android version

The Android SDK Manager allows you to install specific versions of Android. Select WindowAndroid SDK Manager from the Eclipse menu.

Starting ADV Manager

The dialog allows you to install new packages and also allows you to delete them.
Select Available packages and open the Third Party Add-ons . Select the Google API 15 (Android 4.0.3) version of the SDK and press the Install button.

Install Android API

Press the Install button and confirm the license for all packages. After the installation completes, restart Eclipse.

5.6. Android Source Code

During Android development it is very useful to have the Android source code available.
As of Android 4.0 the Android development tools provides also the source code. You can download it via the Android SDK Manager by selecting the Sources for Android SDK.
The sources are downloaded to the source directory located in path_to_android_sdk/sources/android-xx. xx is the API level of Android, e.g. 15 for the Android 4.0.4 version.
To connect the sources with the android.jar file in your Android project, right click on your android.jar in the Eclipse Package Explorer and select PropertiesJava Source Attachment. Type in the source directory name and press the OK button.
Afterwards you can browse through the source code.

6. Android virtual device - Emulator

6.1. What is the Android Emulator?

The Android Development Tools (ADT) include an emulator to run an Android system. The emulator behaves like a real Android device (in most cases) and allows you to test your application without having a real device.
You can configure the version of the Android system you would like to run, the size of the SD card, the screen resolution and other relevant settings. You can define several of them with different configurations.
These devices are called Android Virtual Device " and you can start several in parallel.

6.2. Google vs. Android AVD

During the creation of an AVD you decide if you want an Android device or a Google device.
An AVD created for Android will contain the programs from the Android Open Source Project. An AVD created for the Google API's will also contain several Google applications, most notable the Google Maps application.
If you want to use functionality which is only provided via the Google API's, e.g. Google Maps you must run this application on an AVD with Google API's.

6.3. Emulator Shortcuts

The following shortcuts are useful for working with the emulator.
Alt+Enter Maximizes the emulator. Nice for demos.
Ctrl+F11 changes the orientation of the emulator.
F8 Turns network on / off.

6.4. Performance

The graphics of the emulator can use the native GPU of the computer. This makes the rendering in the emulator very fast. To enable this, add the GPU Emulation property to the device configuration and set it to true.

Enable GPU rendering

You can also set the Enabled flag for Snapshots. This will save the state of the emulator and will let it start much faster. Unfortunately currently native GPU rendering and Snapshots do not work together.

6.5. Hardware button

Android 4.0 introduced that devices do not have to have hardware button anymore. If you want to create such an AVD, add the Hardware Back/Home keys property to the device configuration and set it to false.

How to create an Android Device with software button

7. Tutorial: Create and run Android Virtual Device

To define an Android Virtual Device (ADV) open the AVD Manager dialog via WindowsAVD Manager and press New button.

Create a new AVD

Enter the values similar to the following screenshot.

Settings for a new AVD

Select the Enabled for Snapshots box. This will make the second start of the virtual device much faster.
Press the Create AVD button. This will create the AVD configuration and display it under the Virtual devices.
To test if your setup is correct, select your device and press the Start button
After some time your AVD starts. Do not interrupt this startup process, as this might corrupt the AVD.
After the AVD started, you can use the AVD via the mouse and via the virtual keyboard of the emulator.

8. Error handling and typical problems

Things are not always working as they should. This section gives an overview over typical problems and how to solve them.

8.1. Clean Project

Several users report that they get the following errors:
  1. Project ... is missing required source folder: 'gen'
  2. The project could not be built until build path errors are resolved.
  3. Unable to open class file R.java.

To solve any of these errors, go to the project menu and select ProjectClean.

8.2. Problems with Android Debug Bridge (adb)

The communication with the emulator or your Android device might have problems. This communication is handled by the Android Debug Bridge (adb).
Eclipse allows to reset the adb in case this causes problems. Select therefore the DDMS perspective via WindowOpen PerspectiveOtherDDMS
To restart the adb, select the "Reset adb" in the Device View.


8.3. LogCat

The LogCat view shows you the log messages of your Android device and helps you to analyze problems. For example Java exceptions in your program would be shown here. To open this view, select WindowShow ViewOtherAndroidLogCat.

8.4. Java7

If Android complains that you cannot use Java7 select your right-click on your project and select the Java Compiler entry. Ensure that Java 1.5 or Java 1.6 is used. You may have to select the Enable project specific settings checkbox.

Java compiler settings

8.5. Eclipse reports file from R.java as missing

Sometimes Eclipse complains that a file, e.g. R.layout.main cannot be found. Check in your source code that you did not import android.R. An android.R import will prevent Eclipse from finding your R file.

8.6. Android editor not opened

Android provides nice editors to edit Android resource files, unfortunately these editor are not always automatically used due to bugs in the ADT. If that happens, you can open this editor manually. Right-click on your menu file and select Open withAndroid Menu Editor.

8.7. Emulator does not start

If your emulator does not start, make sure that the android-sdk version is in a path without any spaces in the path name.

8.8. Timeout during deployment

If you face timeout issues during deployment you can increase the default timeout in the Eclipse preferences. Select WindowPreferencesAndroidDDMS and increase the ADB connection timeout (in ms) value.

8.9. Installation failed due to insufficient storage

Sometimes the emulator will refuse to install an application with the error message: INSTALL_FAILED_INSUFFICIENT_STORAGE.
An Android virtual device provides by default only 64M for the storaging Android applications. You can clean your installed application by re-starting the emulator and selecting the Wipe user data " flag.
Alternatively you can set the data partition size. If you press edit on the AVD, you can set the Ideal size of data partition property via the New button.

Setting the Ideal size of data partition for the ADV

8.10. Debug Certificate expired

If you get the error message Debug Certificate expired switch to the folder which contains the Android AVD, e.g. .android under Linux and delete the debug.keystore file. This file is only valid for a year and if not present, Eclipse will regenerate the password.

8.11. Error message for @Override

The @Override annotation was introduced in Java 1.6. If you receive an error message for @Override, change the Java compiler level to Java 1.6. To do this, right-click on the project, select PropertiesJava Compiler Compiler compliance level and select 1.6 in the drop-down box.

8.12. Missing Imports

Java requires that classes which are not part of the standard Java Language are either fully qualified or declared via imports.
If you see an error message with the XX cannot be resolved to a variable text, right-click in your Editor and select Source Organize Imports to important required packages.

9. Conventions for the tutorials

9.1. API version, package and application name

The tutorials of this document have been developed and tested with Android 4.0.4, API Level 15. Please use this version for all tutorials in this book. Higher versions of the API level should also work. A lower version of the Android API might also work, but if you face issues, try the recommended version.
The base package for the projects is always the same as the project name, e.g. if you are asked to create a project called de.vogella.android.example.test, then the corresponding package name is de.vogella.android.example.test.
The application name, which must be entered on the Android project generation wizard, will not be predefined. Choose a name you like.

9.2. Warning messages for Strings

The Android development tools show warnings, if you use hard-coded strings, for example in layout files. For real applications you should use String resource files. To simplify the creation of the examples, we use Strings directly. Please ignore the corresponding warnings.

10. Tutorial: Your first Android project

10.1. Install the demo application

This application is also available on the Android Marketplace under Android Temperature converter .
Alternatively you can also scan the following barcode with your Android smartphone to install it via the Google Play application.

QR Code to install the Android Temperature converter

10.2. Create Project

Select FileNewOtherAndroidAndroid Project and create the Android project "de.vogella.android.temperature". Enter the following.

New Android Project Wizard


New Android Project Wizard - Android Target


New Android Project Wizard - Package Definition

Press "Finish". This should create the following directory structure.

Android Project Structure

10.3. Modifying resources

As described in the Android Development Tools (ADT) chapter, ADT provides specialized editors for resources files, e.g. layout files. These editors allow to switch between the XML representation of the file and a richer user interface via tabs on the bottom of the editor.
The following description uses the rich user interface to build layout files. For validation purposes, the resulting XML is also included in the description.

10.4. Create attributes

Android allows you to create static attributes, e.g. Strings or colors. These attributes can for example be used in your XML layout files or referred to via Java source code.
Select the file "res/values/string.xml" and press the Add button. Select "Color" and enter "myColor" as the name and "#3399CC" as the value.

Adding Android Attributes


Details for a String

Add the following "String" attributes. String attributes allow the developer to translate the application at a later point.

Table 1. String Attributes
Name Value
celsius to Celsius
fahrenheit to Fahrenheit
calc Calculate


Switch to the XML representation and validate that the values are correct.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="hello">Hello World, Convert!</string>
 <string name="app_name">Temperature Converter</string>
 <color name="myColor">#3399CC</color>
 <string name="myClickHandler">myClickHandler</string>
 <string name="celsius">to Celsius</string>
 <string name="fahrenheit">to Fahrenheit</string>
 <string name="calc">Calculate</string>
</resources> 

10.5. Add Views

Select "res/layout/main.xml" and open the Android editor via a double-click. This editor allows you to create the layout via drag and drop or via the XML source code. You can switch between both representations via the tabs at the bottom of the editor. For changing the position and grouping elements you can use the Eclipse "Outline" view.
The following shows a screenshot of the "Palette" view from which you can drag and drop new user interface components into your layout. Please note that the "Palette" view changes frequently so your view might be a bit different.

Palette for the Android Layout Editor

You will now create your new layout.
Right-click on the existing text object “Hello World, Hello!” in the layout. Select "Delete" from the popup menu to remove the text object. Then, from the “Palette” view, select Text Fields and locate "Plain Text". Drag this onto the layout to create a text input field. All object types in the section "Text Fields” derive from the class "EditText", they just specify via an additional attribute which text type can be used.
Afterwards select the Palette section "Form Widgets" and drag a “RadioGroup” object onto the layout. The number of radio buttons added to the radio button group depends on your version of Eclipse. Make sure there are two radio buttons by deleting or adding radio buttons to the group.
From the Palette section Form Widgets, drag a Button object onto the layout.
The result should look like the following.

Current layout of main.xml

Switch to main.xml and verify that your XML looks like the following.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
    android:layout_width="fill_parent"
    android:layout_height="fill_parent"
    android:orientation="vertical" >

    <EditText
        android:id="@+id/editText1"
        android:layout_width="match_parent"
        android:layout_height="wrap_content"
        android:text="EditText" >
    </EditText>

    <RadioGroup
        android:id="@+id/radioGroup1"
        android:layout_width="match_parent"
        android:layout_height="wrap_content" >

        <RadioButton
            android:id="@+id/radio0"
            android:layout_width="wrap_content"
            android:layout_height="wrap_content"
            android:checked="true"
            android:text="RadioButton" >
        </RadioButton>

        <RadioButton
            android:id="@+id/radio1"
            android:layout_width="wrap_content"
            android:layout_height="wrap_content"
            android:text="RadioButton" >
        </RadioButton>
    </RadioGroup>

    <Button
        android:id="@+id/button1"
        android:layout_width="wrap_content"
        android:layout_height="wrap_content"
        android:text="Button" >
    </Button>

</LinearLayout> 

10.6. Edit View properties

If you select a user interface component (an instance of View), you can change its properties via the Eclipse "Properties" view. Most of the properties can be changed via the right mouse menu. You can also edit properties of fields directly in XML. Changing properties in the XML file is much faster, if you know what you want to change. But the right mouse functionality is nice, if you are searching for a certain property.
Open your main.xml layout file . The EditText control shows currently a default text. We want to delete this initial text in the XML code. Switch to the XML tab called main.xml and delete the android:text="EditText" property from the EditText part. Switch back to the "Graphical Layout" tab and check that the text is removed.
Use the right mouse click on the first radio button to assign the "celsius" String attribute to its "text" property. Assign the "fahrenheit" string attribute to the second radio button.

Change the text property of the radio button


Selection of the right text from the pre-defined string values

From now on, I assume you are able to use the properties menu on user interface components. You can always either edit the XML file or modify the properties via right mouse click.
Set the property "Checked" to true for the first RadioButton.
Assign "calc" to the text property of your button and assign "myClickHandler" to the onClick property.
Set the "Input type" property to "numberSigned" and "numberDecimal" on your EditText.
All your user interface components are contained in a LinearLayout. We want to assign a background color to this LinearLayout. Right-click on an empty space in Graphical Layout mode, then select Other PropertiesAll by NameBackground. Select “Color” and then select "myColor" "in the list which is displayed.

New look of the layout after the changes

Switch to the main.xml tab and verify that the XML is correct.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
    android:layout_width="fill_parent"
    android:layout_height="fill_parent"
    android:background="@color/myColor"
    android:orientation="vertical" >

    <EditText
        android:id="@+id/editText1"
        android:layout_width="match_parent"
        android:layout_height="wrap_content"
        android:inputType="numberDecimal|numberSigned" >
    </EditText>

    <RadioGroup
        android:id="@+id/radioGroup1"
        android:layout_width="match_parent"
        android:layout_height="wrap_content" >

        <RadioButton
            android:id="@+id/radio0"
            android:layout_width="wrap_content"
            android:layout_height="wrap_content"
            android:checked="true"
            android:text="@string/celsius" >
        </RadioButton>

        <RadioButton
            android:id="@+id/radio1"
            android:layout_width="wrap_content"
            android:layout_height="wrap_content"
            android:text="@string/fahrenheit" >
        </RadioButton>
    </RadioGroup>

    <Button
        android:id="@+id/button1"
        android:layout_width="wrap_content"
        android:layout_height="wrap_content"
        android:onClick="myClickHandler"
        android:text="@string/calc" >
    </Button>

</LinearLayout> 

10.7. Change the Activity source code

During the generation of your new Android project you specified that an Activity called ConvertActivity should be created. The project wizard created the corresponding Java class.
Change your code in ConvertActivity.java to the following. Note that the myClickHandler will be called based on the OnClick property of your button.

package de.vogella.android.temperature;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.EditText;
import android.widget.RadioButton;
import android.widget.Toast;

public class ConvertActivity extends Activity {
 private EditText text;

 @Override
 public void onCreate(Bundle savedInstanceState) {
  super.onCreate(savedInstanceState);
  setContentView(R.layout.main);
  text = (EditText) findViewById(R.id.editText1);

 }

 // This method is called at button click because we assigned the name to the
 // "On Click property" of the button
 public void myClickHandler(View view) {
  switch (view.getId()) {
  case R.id.button1:
   RadioButton celsiusButton = (RadioButton) findViewById(R.id.radio0);
   RadioButton fahrenheitButton = (RadioButton) findViewById(R.id.radio1);
   if (text.getText().length() == 0) {
    Toast.makeText(this, "Please enter a valid number",
      Toast.LENGTH_LONG).show();
    return;
   }

   float inputValue = Float.parseFloat(text.getText().toString());
   if (celsiusButton.isChecked()) {
    text.setText(String
      .valueOf(convertFahrenheitToCelsius(inputValue)));
    celsiusButton.setChecked(false);
    fahrenheitButton.setChecked(true);
   } else {
    text.setText(String
      .valueOf(convertCelsiusToFahrenheit(inputValue)));
    fahrenheitButton.setChecked(false);
    celsiusButton.setChecked(true);
   }
   break;
  }
 }

 // Converts to celsius
 private float convertFahrenheitToCelsius(float fahrenheit) {
  return ((fahrenheit - 32) * 5 / 9);
 }

 // Converts to fahrenheit
 private float convertCelsiusToFahrenheit(float celsius) {
  return ((celsius * 9) / 5) + 32;
 }
} 

10.8. Start Project

To start the Android Application, select your project, right click on it, and select Run-AsAndroid Application. If an emulator is not yet running, it will be started. Be patient, the emulator starts up very slowly.
You should get the following result.

The running application in the emulator

Type in a number, select your conversion and press the button. The result should be displayed and the other option should get selected.

11. Starting an installed application

After you run your application on the virtual device, you can start it again on the device. If you press the "Home" button you can select your application.

How to select your application from the Android home menu


Selecting the application from the application choicer

12. OptionMenu and ActionBar

12.1. ActionBar

The ActionBar is located at the top of the Activity that may display the Activity title, navigation modes, and other interactive items.
The following picture show the ActionBar of a typical Google Application with interactive items and a nagivation bar.

ActionBar Screenshot

12.2. OptionsMenu

The application can also open a menu which shows actions via a popup menu. This OptionsMenu is only available if the phone has a hardware "Options" button. Even if the hardware button is available, it is recommended to use the ActionBar, which is available for phones as of Android 4.0.
The following picture highlights the hardware button and the resulting menu as popup.

Old OptionsMenu

One of the reasons why the ActionBar is superior to the OptionsMenu, if that it is clearly visible, while the OptionsMenu is only shown on request and the user may not recognize that options are available.

12.3. Creating the menu

The OptionsMenu and the ActionBar is filled by the onCreateOptionsMenu() method of your Activity.
In the onCreateOptionsMenu() method you can create the menu entries. You can add menu entries via code or via the inflation of an existing XML resources.
The MenuInflator class allows to inflate menu entries defined in XML to the menu. MenuInflator can get accessed via the getMenuInflator() method in your Activity.
The onCreateOptionsMenu() method is only called once. If you want to influence the menu later you have to use the onPrepareOptionsMenu() method. onPrepareOptionsMenu() is not called for entries in the ActionBar for these entries you have to use the invalidateOptionsMenu() method.

12.4. Reacting to menu entry selection

If a menu entry is selected then the onOptionsItemSelected() method is called. As parameter you receive the menu entry which was selected so that you can react differently to different menu entries.

12.5. Using the home icon

The ActionBar also shows an icon of your application. You can also add an action to this icon. If you select this icon the onOptionsItemSelected() method will be called with the value android.R.id.home. The recommendation is to return to the main Activity in your program.

// If home icon is clicked return to main Activity
case android.R.id.home:
 Intent intent = new Intent(this, OverviewActivity.class);
 intent.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);
 startActivity(intent);
 break; 

12.6. ActionBar tabs

It is also possible to add tabs to the ActionBar which can be used for navigation. Typically Fragments are used for this purpose. We demonstrate this in the Fragments chapter.

12.7. Custom Views in the ActionBar

You can also add a custom View to the ActionBar. The following code snippet demonstrates that.

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 
 ActionBar actionBar = getActionBar();
 // add the custom view to the action bar
 actionBar.setCustomView(R.layout.actionbar_view);
 actionBar.setDisplayOptions(ActionBar.DISPLAY_SHOW_CUSTOM
  | ActionBar.DISPLAY_SHOW_HOME);
} 

12.8. Contextual action mode

A contextual action mode activates a temporary ActionBar that overlays the application ActionBar for the duration of a particular sub-task.
The contextual action mode is typically activated by selecting an item or by long clicking on it.
To implemented this, call the startActionMode() method on a View or on your Activity. This method gets an ActionMode.Callback object which is responsible for the lifecycle of the contextual ActionBar.

12.9. Context menus

You can also assign a context menu to a View. A context menu is also activated if the user "long presses" the view.
If possible the contextual action mode should be preferred over a context menu.
A context menu for a view is registered via the registerForContextMenu(view) method. The onCreateContextMenu() method is called every time a context menu is activated as the context menu is discarded after its usage. The Android platform may also add options to your View, e.g. EditText provides context options to select text, etc.

13. Tutorial: ActionBar

13.1. Project

This chapter will demonstrate how to create items in the ActionBar and react to the selection of the user.
Create a project called "de.vogella.android.socialapp" with the Activity called OverviewActivity.

13.2. Add a menu XML resource

Select your project, right click on it and select NewOtherAndroidAndroid XML File to create a new XML resource.
Select the Menu option, enter mainmenu.xml as filename and press the Finish button.

Creating a new XML resource for the menu

This will create a new mainmenu.xml file in the res/menu folder of your project. Open this file and select the Layout tab of the Android editor.
Press the Add button and select the Item entry. Maintain a entry similar to the following screenshot. Via the ifRoom attribute you define that the menu entry is displayed in the ActionBar if there is sufficient space available.

How to maintain the menu entries in an menu xml file

Add a similar entry to the menu with the ID attribute set to "@+id/menuitem2", and the Title attribute set to "Test". Also set the ifRoom flag.
The resulting XML will look like the following.

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android" >

    <item
        android:id="@+id/menuitem1"
        android:showAsAction="ifRoom"
        android:title="Prefs">
    </item>
    <item
        android:id="@+id/menuitem2"
        android:showAsAction="ifRoom"
        android:title="Test">
    </item>

</menu> 

Change your OverviewActivity class to the following.

package de.vogella.android.socialapp;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.widget.Toast;

public class OverviewActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
  super.onCreate(savedInstanceState);
  setContentView(R.layout.main);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
  MenuInflater inflater = getMenuInflater();
  inflater.inflate(R.menu.mainmenu, menu);
  return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
  switch (item.getItemId()) {
  case R.id.menuitem1:
   Toast.makeText(this, "Menu Item 1 selected", Toast.LENGTH_SHORT)
     .show();
   break;
  case R.id.menuitem2:
   Toast.makeText(this, "Menu item 2 selected", Toast.LENGTH_SHORT)
     .show();
   break;

  default:
   break;
  }

  return true;
 }
} 

Run your application. As there is enough space in the ActionBar otherwise you may see the Overflow menu or you have to use the Option menu button on your phone. If you select one item, you should see a small info message.

Social App running

14. Tutorial: Using the contextual action mode

Add a EditText element your main.xml layout file.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
    android:layout_width="fill_parent"
    android:layout_height="fill_parent"
    android:orientation="vertical" >

    <EditText
        android:id="@+id/myView"
        android:layout_width="match_parent"
        android:layout_height="wrap_content"
        android:ems="10" >

        <requestFocus />
    </EditText>

</LinearLayout> 

Create a new menu XML resource with the file name "contextual.xml"

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android" >
    <item
        android:id="@+id/toast"
        android:title="Toast">
    </item>

</menu> 

Change your Activity to the following.

package de.vogella.android.socialapp;

import android.app.Activity;
import android.os.Bundle;
import android.view.ActionMode;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.widget.Toast;

public class OverviewActivity extends Activity {
 protected Object mActionMode;
 @Override
 public void onCreate(Bundle savedInstanceState) {
  super.onCreate(savedInstanceState);
  setContentView(R.layout.main);
  // Define the contextual action mode
  View view = findViewById(R.id.myView);
  view.setOnLongClickListener(new View.OnLongClickListener() {
   // Called when the user long-clicks on someView
   public boolean onLongClick(View view) {
    if (mActionMode != null) {
     return false;
    }

    // Start the CAB using the ActionMode.Callback defined above
    mActionMode = OverviewActivity.this
      .startActionMode(mActionModeCallback);
    view.setSelected(true);
    return true;
   }
  });
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
  MenuInflater inflater = getMenuInflater();
  inflater.inflate(R.menu.mainmenu, menu);
  return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
  Toast.makeText(this, "Just a test", Toast.LENGTH_SHORT).show();
  return true;
 }

 private ActionMode.Callback mActionModeCallback = new ActionMode.Callback() {

  // Called when the action mode is created; startActionMode() was called
  public boolean onCreateActionMode(ActionMode mode, Menu menu) {
   // Inflate a menu resource providing context menu items
   MenuInflater inflater = mode.getMenuInflater();
   // Assumes that you have "contexual.xml" menu resources
   inflater.inflate(R.menu.contextual, menu);
   return true;
  }

  // Called each time the action mode is shown. Always called after
  // onCreateActionMode, but
  // may be called multiple times if the mode is invalidated.
  public boolean onPrepareActionMode(ActionMode mode, Menu menu) {
   return false; // Return false if nothing is done
  }

  // Called when the user selects a contextual menu item
  public boolean onActionItemClicked(ActionMode mode, MenuItem item) {
   switch (item.getItemId()) {
   case R.id.toast:
    Toast.makeText(OverviewActivity.this, "Selected menu",
      Toast.LENGTH_LONG).show();
    mode.finish(); // Action picked, so close the CAB
    return true;
   default:
    return false;
   }
  }

  // Called when the user exits the action mode
  public void onDestroyActionMode(ActionMode mode) {
   mActionMode = null;
  }
 };

} 

If you run this example and long press the EditText widget, your contextual ActionBar is displayed.

Contextual ActionBar demonstrated

15. Layout Manager and ViewGroups

15.1. Available Layout Manager

A layout manager is a subclass of ViewGroup and is responsible for the layout of itself and its child Views. Android supports different default layout managers.
As of Android 4.0 the most relevant layout managers are LinearLayout, FrameLayout, RelativeLayout and GridLayout.
All layouts allow the developer to define attributes. Children can also define attributes which may be evaluated by their parent layout.
AbsoluteLayoutLayout is deprecated and TableLayout can be implemented more effectively via GridLayout

15.2. LinearLayout

LinearLayout puts all its child elements into a single column or row depending on the android:orientation attribute. Possible values for this attribute are horizontal and vertical, horizontal is the default value.
LinearLayout can be nested to achieve more complex layouts.

15.3. RelativeLayout

RelativeLayout allow to position the widget relative to each other. This allows for complex layouts.
A simple usage for RelativeLayout is if you want to center a single component. Just add one component to the RelativeLayout and set the android:layout_centerInParent attribute to true.

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
    android:layout_width="match_parent"
    android:layout_height="match_parent"
    android:orientation="vertical" >

    <ProgressBar
        android:id="@+id/progressBar1"
        style="?android:attr/progressBarStyleLarge"
        android:layout_width="wrap_content"
        android:layout_height="wrap_content"
        android:layout_centerInParent="true"
         />

</RelativeLayout> 

15.4. GridLayout

GridLayout was introduced with Android 4.0. This layout allows you to organize a view into a Grid. GridLayout separates its drawing area into: rows, columns, and cells.
You can specify how many columns you want for define for each View in which row and column it should be placed and how many columns and rows it should use. If not specified GridLayout uses defaults, e.g. one column, one row and the position of a View depends on the order of the declaration of the Views.

15.5. ScrollView

The ScrollView class can be used to contain one View that might be to big too fit on one screen. ScrollView will is this case display a scroll bar to scroll the context.
Of course this View can be a layout which can then contain other elements.

16. Tutorial: ScrollView

Create an android project "de.vogella.android.scrollview" with the activity "ScrollView". Create the following layout and class.

<?xml version="1.0" encoding="utf-8"?>
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
    android:layout_width="fill_parent"
    android:layout_height="fill_parent"
    android:fillViewport="true"
    android:orientation="vertical" >

    <LinearLayout
        android:id="@+id/LinearLayout01"
        android:layout_width="fill_parent"
        android:layout_height="wrap_content"
        android:orientation="vertical" >

        <TextView
            android:id="@+id/TextView01"
            android:layout_width="wrap_content"
            android:layout_height="wrap_content"
            android:paddingLeft="8dip"
            android:paddingRight="8dip"
            android:paddingTop="8dip"
            android:text="This is a header"
            android:textAppearance="?android:attr/textAppearanceLarge" >
        </TextView>

        <TextView
            android:id="@+id/TextView02"
            android:layout_width="wrap_content"
            android:layout_height="fill_parent"
            android:layout_weight="1.0"
            android:text="@+id/TextView02" >
        </TextView>

        <LinearLayout
            android:id="@+id/LinearLayout02"
            android:layout_width="wrap_content"
            android:layout_height="wrap_content" >

            <Button
                android:id="@+id/Button01"
                android:layout_width="wrap_content"
                android:layout_height="wrap_content"
                android:layout_weight="1.0"
                android:text="Submit" >
            </Button>

            <Button
                android:id="@+id/Button02"
                android:layout_width="wrap_content"
                android:layout_height="wrap_content"
                android:layout_weight="1.0"
                android:text="Cancel" >
            </Button>
        </LinearLayout>
    </LinearLayout>

</ScrollView> 


package de.vogella.android.scrollview;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.TextView;

public class ScrollView extends Activity {
    
/** Called when the activity is first created. */
@Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.main); TextView view = (TextView) findViewById(R.id.TextView02); String s=""; for (int i=0; i < 100; i++) { s += "vogella.com "; } view.setText(s); } }

The attribute "android:fillViewport="true"" ensures that the scrollview is set to the full screen even if the elements are smaller then one screen and the "layout_weight" tell the android system that these elements should be extended.

Showing the running application with the ScrollView in action

17. Fragments

17.1. Fragments Overview

Fragment components allow you to organize your application code so that it is easier to support different sized devices.
Fragments are components with their own lifecycle and their own user interface. They can be defined via layout files or via coding.
Fragments always run in the context of an Activity. If an Activity is stopped its Fragments will also be stopped; if an Activity is destroyed its Fragments will also get destroyed.
If a Fragment component is defined in an XML layout file, the android:name attribute points to the Fragments class.
The base class for Fragments is android.app.Fragment. For special purposes you can also use more special classes, like ListFragment or DialogFragment.
The onCreateView() method is called by Android once the Fragment should create its user interface. Here you can inflate an layout. The onStart() method is called once the Fragment gets visible.
Fragments can be dynamically added and removed from an Activity via Fragment transactions. This will add the action to the history stack of the Activity, i.e. this will allow to revert the Fragment changes in the Activity via the back button.

17.2. When to use Fragments

Fragments make it easy to re-use components in different layouts, e.g. you can build single-pane layouts for handsets (phones) and multi-pane layouts for tablets.
This is not limited to tablets; for example you can use Fragments also to support different layout for landscape and portrait orientation. But as tablets offer significantly more space you typically include more views into the layout and Fragments makes that easier.
The typical example is a list of items in an activity. On a tablet you see the details immediately on the same screen on the right hand side if you click on item. On a handset you jump to a new detail screen. The following discussion will assume that you have two Fragments (main and detail) but you can also have more. We will also have one main activity and one detailed activity. On a tablet the main activity contains both Fragments in its layout, on a handheld it only contains the main fragment.
To check for an fragment you can use the FragmentManager.

DetailFragment fragment = (DetailFragment) getFragmentManager().
  findFragmentById(R.id.detail_frag);
if (fragment==null || ! fragment.isInLayout()) {
 // start new Activity
 }
else {
 fragment.update(...);
} 

To create different layouts with Fragments you can:
  • Use one activity, which displays two Fragments for tablets and only one on handsets devices. In this case you would switch the Fragments in the activity whenever necessary. This requires that the fragment is not declared in the layout file as such Fragments cannot be removed during runtime. It also requires an update of the action bar if the action bar status depends on the fragment.
  • Use separate activities to host each fragment on a handset. For example, when the tablet UI uses two Fragments in an activity, use the same activity for handsets, but supply an alternative layout that includes just one fragment. When you need to switch Fragments, start another activity that hosts the other fragment.

The second approach is the most flexible and in general preferable way of using Fragments. In this case the main activity checks if the detail fragment is available in the layout. If the detailed fragment is there, the main activity tells the fragment that is should update itself. If the detail fragment is not available the main activity starts the detailed activity.
It is good practice that Fragments do not manipulate each other. For this purpose a Fragment typically implements an interface to get new data from its host Activity.

18. Fragments Tutorial

18.1. Overview

The following tutorial demonstrates how to use Fragments. The entry Activity (called MainActivity of our application) will use different layouts for portrait and for landscape mode.
In portrait mode MainActivity will show one Fragment with a list of names. If the user touches an item in the list, a second Activity called DetailActivity will start and show the selected text.
In landscape mode MainActivity will show two Fragments. The first is again the Fragments which shows the list of names. The second Fragment shows the text of the current selected item. This is similar to the portrait mode, but the whole information will be shown on one screen.

18.2. Create project

Create a new project de.vogella.android.fragments with an Activity called MainActivity.

18.3. Create layouts for portrait mode

Create or change the following layout files in the "res/layout/" folder.
First create the following file called "details.xml". This layout will be used by the DetailFragment.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
    android:layout_width="match_parent"
    android:layout_height="match_parent"
    android:orientation="vertical" >

    <TextView
        android:id="@+id/detailsText"
        android:layout_width="wrap_content"
        android:layout_height="match_parent"
        android:layout_gravity="center_horizontal|center_vertical"
        android:layout_marginTop="20dip"
        android:text="Large Text"
        android:textAppearance="?android:attr/textAppearanceLarge"
        android:textSize="30dip" />

</LinearLayout> 

Change the existing main.xml file. This layout will be used by MainActivity in landscape mode and shows two Fragments.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
    android:layout_width="fill_parent"
    android:layout_height="fill_parent"
    android:orientation="horizontal" >

    <fragment
        android:id="@+id/listFragment"
        android:layout_width="150dip"
        android:layout_height="match_parent"
        android:layout_marginTop="?android:attr/actionBarSize"
        class="de.vogella.android.fragments.ListFragment" ></fragment>

    <fragment
        android:id="@+id/detailFragment"
        android:layout_width="match_parent"
        android:layout_height="match_parent"
        class="de.vogella.android.fragments.DetailFragment" >
        <!-- Preview: layout=@layout/details -->
    </fragment>

</LinearLayout> 

18.4. Create Fragment classes

Create now the Fragment classes. Create the ListFragment class.

package de.vogella.android.fragments;

import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.ArrayAdapter;
import android.widget.ListView;

public class ListFragment extends android.app.ListFragment {
 @Override
 public void onCreate(Bundle savedInstanceState) {
  super.onCreate(savedInstanceState);

 }

 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
  super.onActivityCreated(savedInstanceState);
  String[] values = new String[] { "Android", "iPhone", "WindowsMobile",
    "Blackberry", "WebOS", "Ubuntu", "Windows7", "Max OS X",
    "Linux", "OS/2" };
  ArrayAdapter<String> adapter = new ArrayAdapter<String>(getActivity(),
    android.R.layout.simple_list_item_1, values);
  setListAdapter(adapter);
 }

 @Override
 public void onListItemClick(ListView l, View v, int position, long id) {
  String item = (String) getListAdapter().getItem(position);
  DetailFragment fragment = (DetailFragment) getFragmentManager()
    .findFragmentById(R.id.detailFragment);
  if (fragment != null && fragment.isInLayout()) {
   fragment.setText(item);
  } else {
   Intent intent = new Intent(getActivity().getApplicationContext(),
     DetailActivity.class);
   intent.putExtra("value", item);
   startActivity(intent);

  }

 }
} 

Create the DetailFragment class.

package de.vogella.android.fragments;

import android.app.Fragment;
import android.os.Bundle;
import android.util.Log;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.TextView;

public class DetailFragment extends Fragment {
 @Override
 public void onCreate(Bundle savedInstanceState) {
  super.onCreate(savedInstanceState);
  Log.e("Test", "hello");
 }

 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
  super.onActivityCreated(savedInstanceState);

 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
   Bundle savedInstanceState) {
  View view = inflater.inflate(R.layout.details, container, false);
  return view;
 }

 public void setText(String item) {
  TextView view = (TextView) getView().findViewById(R.id.detailsText);
  view.setText(item);
 }
} 

18.5. Create layouts for landscape mode

We want that Android uses a different main.xml file in portrait model then in landscape mode.
For this reason create the "res/layout-port" folder.
In portrait mode Android will check the "layout-port" folder for fitting layout files. Only if we would not have a main.xml file in "layout-port", Android would check the "layout" folder.
Therefore create the following main.xml layout file in "res/layout-port".

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
    android:layout_width="fill_parent"
    android:layout_height="fill_parent"
    android:orientation="horizontal" >

    <fragment
        android:id="@+id/listFragment"
        android:layout_width="match_parent"
        android:layout_height="match_parent"
        android:layout_marginTop="?android:attr/actionBarSize"
        class="de.vogella.android.fragments.ListFragment" />
</LinearLayout> 

Also create the "details_activity_layout.xml" layout file. This layout will be used in the DetailActivity which is only used in portrait mode. Please note that we could have create this file also in the "layout" folder, but as it is only used in portrait mode it is best practise to place it into this folder.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
    android:layout_width="match_parent"
    android:layout_height="match_parent"
    android:orientation="vertical" >

    <fragment
        android:id="@+id/detailFragment"
        android:layout_width="match_parent"
        android:layout_height="match_parent"
        class="de.vogella.android.fragments.DetailFragment" />

</LinearLayout> 

18.6. Activities

Create a new Activity called DetailActivity with the following class.

package de.vogella.android.fragments;

import android.app.Activity;
import android.content.res.Configuration;
import android.os.Bundle;
import android.widget.TextView;

public class DetailActivity extends Activity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
  super.onCreate(savedInstanceState);

  // Need to check if Activity has been switched to landscape mode
  // If yes, finished and go back to the start Activity
  if (getResources().getConfiguration().orientation == 
    Configuration.ORIENTATION_LANDSCAPE) {
   finish();
   return;
  }

  setContentView(R.layout.details_activity_layout);
  Bundle extras = getIntent().getExtras();
  if (extras != null) {
   String s = extras.getString("value");
   TextView view = (TextView) findViewById(R.id.detailsText);
   view.setText(s);
  }
 }
} 

MainActivity will remain unmodified.

package de.vogella.android.fragments;

import android.app.Activity;
import android.os.Bundle;

public class MainActivity extends Activity {
 
/** Called when the activity is first created. */
@Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.main); } }

18.7. Run

Run your example. If you run the application in portrait mode you should see only one Fragment. Use Ctrl+F11 to switch the orientation. In horizontal mode you should see two Fragments. If you select an item in portrait mode a new Activity should get started with the selected item. In horizontal mode your second Fragment should display the select item.

19. ActionBar navigation with Fragments

Fragments can also be used in combination with the ActionBar for navigation. For this your main Activity needs to implement a TabListener which is responsible for moving between the tabs.
The ActionBar allows to add tabs to it via the newTab() method. The following code shows such an Activity. It uses two Fragments, called DetailFragment and ImageFragment. At this point you should be able to create these two Fragments yourself.

package de.vogella.android.fragment;

import android.app.ActionBar;
import android.app.ActionBar.Tab;
import android.app.ActionBar.TabListener;
import android.app.Activity;
import android.app.Fragment;
import android.app.FragmentTransaction;
import android.os.Bundle;

public class MainActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
  super.onCreate(savedInstanceState);
  setContentView(R.layout.main);
  // setup action bar for tabs
  ActionBar actionBar = getActionBar();
  actionBar.setNavigationMode(ActionBar.NAVIGATION_MODE_TABS);
  actionBar.setDisplayShowTitleEnabled(false);

  Tab tab = actionBar
    .newTab()
    .setText("First tab")
    .setTabListener(new MyTabListener<DetailFragment>(this, "artist",
        DetailFragment.class));
  actionBar.addTab(tab);

  tab = actionBar
    .newTab()
    .setText("Second Tab")
    .setTabListener(new MyTabListener<ImageFragment>(this, "album",
        ImageFragment.class));
  actionBar.addTab(tab);

 }

 public static class MyTabListener<T extends Fragment> implements
   TabListener {
  private Fragment mFragment;
  private final Activity mActivity;
  private final String mTag;
  private final Class<T> mClass;

  
/** * Constructor used each time a new tab is created. * * @param activity * The host Activity, used to instantiate the fragment * @param tag * The identifier tag for the fragment * @param clz * The fragment's Class, used to instantiate the fragment */
public MyTabListener(Activity activity, String tag, Class<T> clz) { mActivity = activity; mTag = tag; mClass = clz; } /* The following are each of the ActionBar.TabListener callbacks */ public void onTabSelected(Tab tab, FragmentTransaction ft) { // Check if the fragment is already initialized if (mFragment == null) { // If not, instantiate and add it to the activity mFragment = Fragment.instantiate(mActivity, mClass.getName()); ft.add(android.R.id.content, mFragment, mTag); } else { // If it exists, simply attach it in order to show it ft.setCustomAnimations(android.R.animator.fade_in, R.animator.animationtest); ft.attach(mFragment); } } public void onTabUnselected(Tab tab, FragmentTransaction ft) { if (mFragment != null) { ft.setCustomAnimations(android.R.animator.fade_in, R.animator.test); ft.detach(mFragment); } } public void onTabReselected(Tab tab, FragmentTransaction ft) { } } }

20. DDMS perspective and important views

20.1. DDMS - Dalvik Debug Monitor Server

Eclipse provides a perspective for interacting with your Android (virtual) device and your Android application program. Select WindowOpen PerspectiveOtherDDMS to open this perspective. It includes several Views which can also be used independently and allows for example the application to place calls and send SMS to the device. It also allows the application to set the current geo position and allows you to perform a performance trace of your application.

20.2. LogCat View

You can see the log (including System.out.print() statements) via the LogCat view.

Showing the LogCat view

20.3. File explorer

The file explorer allows to see the files on the Android simulator.

Showing the File Explorer View

21. Shell

21.1. Android Debugging Bridge - Shell

You can access your Android emulator also via the console. Open a shell, switch to your "android-sdk" installation directory into the folder "tools". Start the shell via the following command "adb shell".

adb shell 
You can also copy a file from and to your device via the following commands.

// Assume the gesture file exists on your Android device
adb pull /sdcard/gestures ~/test
// Now copy it back
adb push ~/test/gesture /sdcard/gestures2 

This will connect you to your device and give you Linux command line access to the underlying file system, e.g. ls, rm, mkdir, etc. The application data is stored in the directory "/data/data/package_of_your_app".
If you have several devices running you can issue commands to one individual device.

# Lists all devices
adb devices
#Result
List of devices attached
emulator-5554 attached
emulator-5555 attached
# Issue a command to a specific device
adb -s emulator-5554 shell 

21.2. Uninstall an application via adb

You can uninstall an android application via the shell. Switch the data/app directory (cd /data/app) and simply delete your android application.
You can also uninstall an app via adb with the package name.

adb uninstall <packagename> 

21.3. Emulator Console via telnet

Alternatively to adb you can also use telnet to connect to the device. This allows you to simulate certain things, e.g. incoming call, change the network "stability", set your current geocodes, etc. Use "telnet localhost 5554" to connect to your simulated device. To exit the console session, use the command "quit" or "exit".
For example to change the power settings of your phone, to receive an sms and to get an incoming call make the following.

# connects to device
telnet localhost 5554
# set the power level
power status full
power status charging
# make a call to the device
gsm call 012041293123
# send a sms to the device
sms send 12345 Will be home soon
# set the geo location
geo fix 48 51 

For more information on the emulator console please see Emulator Console manual

22. Deployment

22.1. Overview

In general there are you restrictions how to deploy an Android application to your device. You can use USB, email yourself the application or use one of the many Android markets to install the application. The following describes the most common ones.

22.2. Deployment via Eclipse

Turn on "USB Debugging" on your device in the settings. Select in the settings of your device ApplicationsDevelopment, then enable USB debugging.
You may also need to install the a driver for your mobile phone. Linux and Mac OS usually work out of the box while an Windows OS typically requires
For details please see Developing on a Device . Please note that the Android version you are developing for must be the installed version on your phone.
To select your phone, select the "Run Configurations", select "Manual" selection and select your device.

The Android Run Configuration on the Target Tab, selecting the "Manual" flag.


Show the selection of the real device to deploy on it.

Android application must be signed before they can get installed on an Android device. During development Eclipse signs your application automatically with a debug key.
If you want to install your application without the Eclipse IDE you can right click on it and select Android ToolsExport Signed Application Package.
This wizard allows to use an existing key or to create a new one.
Please note that you need to use the same signature key in Google Play (Google Market) to update your application. If you loose the key you will NOT be able to update your application ever again.
Make sure to backup your key.

22.4. Via external sources

Android allow to install applications also directly. Just click on a link which points to an .apk file, e.g. in an email attachment or on a webpage. Android will prompt you if you want to install this application.
This requires a setting on the Android device which allows the installation of non-market application. Typically this setting can be found under the "Security" settings.

22.5. Google Play (Market)

Google Play requires a one time fee, currently 25 Dollar. After that the developer can directly upload his application and the required icons, under Google Play Publishing .
Google performs some automatic scanning of applications, but no approval process is in place. All application, which do not contain malware, will be published. Usually a few minutes after upload, the application is available.

23. Thank you


Please help me to support this article:
Flattr this

24. Questions and Discussion

Before posting questions, please see the vogella FAQ. If you have questions or find an error in this article please use the www.vogella.com Google Group. I have created a short list how to create good questions which might also help you.

25. Links and Literature

25.1. Source Code

Source Code of Examples

25.3. vogella Resources

Android Training Android Training from the vogella team
Eclipse RCP Training Eclipse 4 RCP Training from the vogella team
Android Tutorial Introduction to Android Programming
GWT Tutorial Program in Java and compile to JavaScript and HTML
Eclipse RCP Tutorial Create native applications in Java
JUnit Tutorial Test your application
Git Tutorial Put everything you have under distributed version control system

Source :   http://www.vogella.com/articles/Android/article.html

No comments:

Post a Comment