Higgs boson
From Wikipedia, the free encyclopedia
"God particle" redirects here. For the book, see The God Particle: If the Universe Is the Answer, What Is the Question?.
One possible signature of a Higgs boson from a simulated proton–proton collision. It decays almost immediately into two jets of hadrons and two electrons, visible as lines.[Note 1] |
|
Composition | Elementary particle |
---|---|
Statistics | Bosonic |
Status | Tentatively observed – a boson "consistent with" the Higgs boson has been observed, but as of July 2012, scientists have not conclusively identified it as the Higgs boson.[1] |
Symbol | H0 |
Theorised | R. Brout, F. Englert, P. Higgs, G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble (1964) |
Discovered | a compatible particle has been observed by ATLAS and CMS (2012) |
Types | 1 in the Standard Model; 5 or more in supersymmetric models |
Mass | 125.3±0.6 GeV/c2,[2] ∼126 GeV/c2[3] |
Electric charge | 0 |
Spin | 0 |
Because of its role in a fundamental property of elementary particles, the Higgs boson has been referred to as the "God particle" in popular culture, although virtually all scientists regard this as a hyperbole. According to the Standard Model, the Higgs particle is a boson, a type of particle that allows multiple identical particles to exist in the same place in the same quantum state. Furthermore, the model posits that the particle has no intrinsic spin, no electric charge, and no colour charge. It is also very unstable, decaying almost immediately after its creation.
On 4 July 2012, the CMS and the ATLAS experimental collaborations at the Large Hadron Collider announced that they observed a new boson that is consistent with the Higgs boson, noting that further data and analysis were needed before the particle could be positively identified.
Contents |
Overview
The existence of the Higgs boson was predicted in 1964 to explain the Higgs mechanism (sometimes termed in the literature the Brout–Englert–Higgs, BEH or Brout–Englert–Higgs–Hagen–Guralnik–Kibble mechanism after its original proposers[7])—the mechanism by which elementary particles are given mass.[Note 2] While the Higgs mechanism is considered confirmed to exist, the boson itself—a cornerstone of the leading theory—had not been observed and its existence was unconfirmed. Its tentative discovery in July 2012 may validate the Standard Model as essentially correct, as it is the final elementary particle predicted and required by the Standard Model which had not yet been observed via particle physics experiments.[8] Alternative sources of the Higgs mechanism that do not need the Higgs boson also are possible and would be considered if the existence of the Higgs boson were to be ruled out. They are known as Higgsless models.The Higgs boson is named after Peter Higgs, who in 1964 wrote one of three ground-breaking papers alongside the work of Robert Brout and François Englert and Tom Kibble, C. R. Hagen and Gerald Guralnik covering what is now known as the Higgs mechanism and described the related Higgs field and boson.
Technically, it is the quantum excitation of the Higgs field, and the non-zero value of the ground state of this field, that give mass to the other elementary particles, such as quarks and electrons. The Standard Model completely fixes the properties of the Higgs boson, except for its mass. It is expected to have no spin and no electric or colour charge, and it interacts with other particles through the weak interaction and Yukawa-type interactions between the various fermions and the Higgs field.
Because the Higgs boson is a very massive particle and decays almost immediately when created, only a very high-energy particle accelerator can observe and record it. Experiments to confirm and determine the nature of the Higgs boson using the Large Hadron Collider (LHC) at CERN began in early 2010, and were performed at Fermilab's Tevatron until its close in late 2011. Mathematical consistency of the Standard Model requires that any mechanism capable of generating the masses of elementary particles become visible at energies above 1.4 TeV;[9] therefore, the LHC (designed to collide two 7 TeV proton beams, but currently running at 4 TeV each) was built to answer the question of whether or not the Higgs boson exists.[10]
On 4 July 2012, the two main experiments at the LHC (ATLAS and CMS) both reported independently the confirmed existence of a previously unknown particle with a mass of about 125 GeV/c2 (about 133 proton masses, on the order of 10−25 kg), which is "consistent with the Higgs boson" and widely believed to be the Higgs boson. They cautioned that further work would be needed to confirm that it is indeed the Higgs boson (meaning that it has the theoretically predicted properties of the Higgs boson and is not some other previously unknown particle) and, if so, to determine which version of the Standard Model it best supports.[1][2][3][11][12]
General description
See also: Introduction to the Higgs field
This section needs additional citations for verification. (July 2012) |
The leading and simplest theory for how this effect takes place in nature was that if a particular kind of "field" (known as a Higgs field) happened to permeate space, and if it could interact with fundamental particles in a particular way, then this would give rise to a Higgs mechanism in nature, and would therefore create around us the phenomenon we call "mass". During the 1960s and 1970s the Standard Model of physics was developed on this basis, and it included a prediction and requirement that for these things to be true, there had to be an undiscovered boson—one of the fundamental particles—as the counterpart of this field. This would be the Higgs boson. If the Higgs boson were confirmed to exist, as the Standard Model suggested, then scientists could be satisfied that the Standard Model was fundamentally correct. If the Higgs boson were proved not to exist, then other theories would be considered as candidates instead.
The Standard Model also made clear that the Higgs boson would be very difficult to demonstrate. It exists for only a tiny fraction of a second before breaking up into other particles—so quickly that it cannot be directly detected—and can be detected only by identifying the results of its immediate decay and analysing them to show they were probably created from a Higgs boson and not some other source. The Higgs boson requires so much energy to create (compared to many other fundamental particles) that it also requires a massive particle accelerator to create collisions energetic enough to create it and record the traces of its decay. Given a suitable accelerator and appropriate detectors, scientists can record trillions of particles colliding, analyse the data for collisions likely to be a Higgs boson, and then perform further analysis to test how likely it is that the results combined show a Higgs boson does exist, and that the results are not just due to chance.
Experiments to try to show whether the Higgs boson did or did not exist began in the 1980s, but until the 2000s it could only be said that certain areas were plausible, or ruled out. In 2008 the Large Hadron Collider (LHC) was inaugurated, being the most powerful particle accelerator ever built. It was designed especially for this experiment, and other very-high-energy tests of the Standard Model. In 2010 it began its primary research role: to prove whether or not the Higgs boson exists.
In late 2011 two of the LHC's experiments independently began to suggest "hints" of a Higgs boson detection around 125 GeV. In July 2012 CERN announced[1] evidence of discovery of a boson with an energy level and other properties consistent with those expected in a Higgs boson. Further work is necessary for the evidence to be considered conclusive (or disproved). If the newly discovered particle is indeed the Higgs boson, attention will turn to considering whether its characteristics match one of the extant versions of the Standard Model. The CERN data include clues that additional bosons or similar-mass particles may have been discovered as well as, or instead of, the Higgs itself. If a different boson were confirmed, it would allow and require the development of new theories to supplant the current Standard Model.
History
See also: 1964 PRL symmetry breaking papers and Higgs mechanism
The six authors of the 1964 PRL papers, who received the 2010 J. J. Sakurai Prize for their work. From left to right: Kibble, Guralnik, Hagen, Englert, Brout. Right: Higgs. |
The Higgs mechanism is a process by which vector bosons can get rest mass without explicitly breaking gauge invariance. The proposal for such a spontaneous symmetry breaking mechanism originally was suggested in 1962 by Philip Warren Anderson[15] and developed into a full relativistic model, independently and almost simultaneously, by three groups of physicists: by François Englert and Robert Brout in August 1964;[16] by Peter Higgs in October 1964;[17] and by Gerald Guralnik, C. R. Hagen, and Tom Kibble (GHK) in November 1964.[18] Properties of the model were further considered by Guralnik in 1965 [19] and by Higgs in 1966.[20] The papers showed that when a gauge theory is combined with an additional field that spontaneously breaks the symmetry group, the gauge bosons can consistently acquire a finite mass. In 1967, Steven Weinberg and Abdus Salam were the first to apply the Higgs mechanism to the breaking of the electroweak symmetry, and showed how a Higgs mechanism could be incorporated into Sheldon Glashow's electroweak theory,[21][22][23] in what became the Standard Model of particle physics.
Wikinews has news related to: | |
In the paper by Higgs the boson is massive, and in a closing sentence Higgs writes that "an essential feature" of the theory "is the prediction of incomplete multiplets of scalar and vector bosons". In the paper by GHK the boson is massless and decoupled from the massive states. In reviews dated 2009 and 2011, Guralnik states that in the GHK model the boson is massless only in a lowest-order approximation, but it is not subject to any constraint and acquires mass at higher orders, and adds that the GHK paper was the only one to show that there are no massless Goldstone bosons in the model and to give a complete analysis of the general Higgs mechanism.[27][28]
In addition to explaining how mass is acquired by vector bosons, the Higgs mechanism also predicts the ratio between the W boson and Z boson masses as well as their couplings with each other and with the Standard Model quarks and leptons. Subsequently, many of these predictions have been verified by precise measurements performed at the LEP and the SLC colliders, thus overwhelmingly confirming that some kind of Higgs mechanism does take place in nature,[29] but the exact manner by which it happens has not yet been discovered. The results of searching for the Higgs boson are expected to provide evidence about how this is realized in nature.
Theoretical properties
Main article: Higgs mechanism
The Standard Model predicts the existence of a field, called the Higgs field, which has a non-zero amplitude in its ground state; i.e. a non-zero vacuum expectation value. The existence of this non-zero vacuum expectation spontaneously breaks electroweak gauge symmetry which in turn gives rise to the Higgs mechanism. It is the simplest process capable of giving mass to the gauge bosons while remaining compatible with gauge theories.[citation needed] The field can be pictured as a pool of molasses
that "sticks" to the otherwise massless fundamental particles that
travel through the field, converting them into particles with mass that
form (for example) the components of atoms. Its quantum would be a scalar boson, known as the Higgs boson.[citation needed]In the Standard Model, the Higgs field consists of two neutral and two charged component fields. Both of the charged components and one of the neutral fields are Goldstone bosons, which act as the longitudinal third-polarization components of the massive W+, W–, and Z bosons.[citation needed] The quantum of the remaining neutral component corresponds to (and is theoretically realised as) the massive Higgs boson. Since the Higgs field is a scalar field, the Higgs boson has no spin. The Higgs boson is also its own antiparticle and is CP-even, and has zero electric and colour charge.[30]
The Minimal Standard Model does not predict the mass of the Higgs boson.[31] If that mass is between 115 and 180 GeV/c2, then the Standard Model can be valid at energy scales all the way up to the Planck scale (1016 TeV).[citation needed] Many theorists expect new physics beyond the Standard Model to emerge at the TeV-scale, based on unsatisfactory properties of the Standard Model.[citation needed] The highest possible mass scale allowed for the Higgs boson (or some other electroweak symmetry breaking mechanism) is 1.4 TeV; beyond this point, the Standard Model becomes inconsistent without such a mechanism, because unitarity is violated in certain scattering processes.[citation needed]
In theory, the mass of the Higgs boson may be estimated indirectly. In the Standard Model, the Higgs boson has a number of indirect effects; most notably, Higgs loops result in tiny corrections to masses of W and Z bosons. Precision measurements of electroweak parameters, such as the Fermi constant and masses of W/Z bosons, can be used to constrain the mass of the Higgs. As of July 2011, the precision electroweak measurements tell us that the mass of the Higgs boson is lower than about 161 GeV/c2 at 95% confidence level (CL). This upper bound increases to 185 GeV/c2 when including the LEP-2 direct search lower bound of 114.4 GeV/c2.[29] These indirect constraints rely on the assumption that the Standard Model is correct. It may still be possible to discover a Higgs boson above 185 GeV/c2 if it is accompanied by other particles beyond those predicted by the Standard Model.[citation needed]
The Minimal Standard Model as described above contains only one complex isospin Higgs doublet, however, it also is possible to have an extended Higgs sector with additional doublets or triplets. The non-minimal Higgs sector favoured by theory are the two-Higgs-doublet models (2HDM), which predict the existence of a quintet of scalar particles: two CP-even neutral Higgs bosons h0 and H0, a CP-odd neutral Higgs boson A0, and two charged Higgs particles H±. The key method to distinguish different variations of the 2HDM models and the minimal SM involves their coupling and the branching ratios of the Higgs decays. The so called Type-I model has one Higgs doublet coupling to up and down quarks, while the second doublet does not couple to quarks. This model has two interesting limits, in which the lightest Higgs doesn't couple to either fermions (fermiophobic) or gauge bosons (gauge-phobic). In the 2HDM of Type-II, one Higgs doublet only couples to up-type quarks, while the other only couples to down-type quarks.
Many extensions to the Standard Model, including supersymmetry (SUSY), often contain an extended Higgs sector. Many supersymmetric models predict that the lightest Higgs boson will have a mass only slightly above the current experimental limits, at around 120 GeV/c2 or less.[citation needed] The heavily researched Minimal Supersymmetric Standard Model (MSSM) belongs to the class of models with a Type-II two-Higgs-doublet sector and could be ruled out by the observation of a Higgs belonging to a Type-I 2HDM.
Alternative mechanisms for electroweak symmetry breaking
Main article: Higgsless model
In the years since the Higgs field and boson were proposed, several
alternative models have been proposed by which the Higgs mechanism might
be realised. The Higgs boson exists in some, but not all, theories. For
example, it exists in the Standard Model and extensions such as the Minimal Supersymmetric Standard Model yet is not expected to exist in alternative models such as Technicolor.
Models which do not include a Higgs field or a Higgs boson are known as
Higgsless models. In these models, strongly interacting dynamics rather
than an additional (Higgs) field produce the non-zero vacuum expectation value that breaks electroweak symmetry. A partial list of these alternative mechanisms are:- Technicolor,[32] a class of models that attempts to mimic the dynamics of the strong force as a way of breaking electroweak symmetry.
- Extra dimensional Higgsless models where the role of the Higgs field is played by the fifth component of the gauge field.[33]
- Abbott-Farhi models of composite W and Z vector bosons.[34]
- Top quark condensate theory in which a fundamental scalar Higgs field is replaced by a composite field composed of the top quark and its antiquark.
- The braid model of Standard Model particles by Sundance Bilson-Thompson, compatible with loop quantum gravity and similar theories.[35]
Experimental search
This section documents a current event. Information may change rapidly as the event progresses. (July 2012) |
Feynman diagrams showing two ways the Higgs boson might be produced at the LHC. Left: two gluons convert to top/anti-top quark pairs, which combine. Right: two quarks emit W or Z bosons, which combine. |
Wikimedia Commons has media related to: Large Hadron Collider |
Prior to the year 2000, data gathered at the Large Electron–Positron Collider (LEP) at CERN had allowed an experimental lower bound to be set for the mass of the Standard Model Higgs boson of 114.4 GeV/c2 at the 95% confidence level (CL). The same experiment has produced a small number of events that could be interpreted as resulting from Higgs bosons with a mass just above this cut off—around 115 GeV—but the number of events was insufficient to draw definite conclusions.[36] The LEP was shut down in 2000 due to construction of its successor, the Large Hadron Collider (LHC).
Full operation at the LHC was delayed for 14 months from its initial successful tests on 10 September 2008, until mid-November 2009,[37][38] following a magnet quench event nine days after its inaugural tests that damaged over 50 superconducting magnets and contaminated the vacuum system.[39] The quench was traced to a faulty electrical connection and repairs took several months;[40][41] electrical fault detection and rapid quench-handling systems were also upgraded.
At the Fermilab Tevatron, there were also ongoing experiments searching for the Higgs boson. As of July 2010, combined data from CDF and DØ experiments at the Tevatron were sufficient to exclude the Higgs boson in the range 158-175 GeV/c2 at 95% CL.[42][43] Preliminary results as of July 2011 extended the excluded region to the range 156-177 GeV/c2 at 95% CL.[44]
Data collection and analysis in search of Higgs intensified from 30 March 2010 when the LHC began operating at 3.5 TeV.[45] Preliminary results from the ATLAS and CMS experiments at the LHC as of July 2011 excluded a Standard Model Higgs boson in the mass range 155-190 GeV/c2[46] and 149-206 GeV/c2,[47] respectively, at 95% CL. All of the above confidence intervals were derived using the CLs method.
As of December 2011 the search had narrowed to the approximate region 115–130 GeV, with a specific focus around 125 GeV, where both the ATLAS and CMS experiments had independently reported an excess of events,[48][49] meaning that a higher than expected number of particle patterns compatible with the decay of a Higgs boson were detected in this energy range. The data was insufficient to show whether or not these excesses were due to background fluctuations (i.e. random chance or other causes), and its statistical significance was not large enough to draw conclusions yet or even formally to count as an "observation", but the fact that two independent experiments had both shown excesses at around the same mass led to considerable excitement in the particle physics community.[50]
On 22 December 2011, the DØ collaboration also reported limitations on the Higgs boson within the Minimal Supersymmetric Standard Model, an extension to the Standard Model. Proton-antiproton (pp) collisions with a centre-of-mass energy of 1.96 TeV had allowed them to set an upper limit for Higgs boson production within MSSM ranging from 90 to 300 GeV, and excluding tanβ > 20–30 for masses of the Higgs boson below 180 GeV (tanβ is the ratio of the two Higgs doublet vacuum expectation values).[51]
At the end of December 2011, it was therefore widely expected that the LHC would provide sufficient data to either exclude or confirm the existence of the Standard Model Higgs boson by the end of 2012, when their 2012 collision data (at energies of 8 TeV) had been examined.[52]
Updates from the two LHC teams continued during the first part of 2012, with the tentative December 2011 data largely being confirmed and developed further. Updates were also available from the team analysing the final data from the Tevatron. All of these continued to highlight and narrow down the 125 GeV region as showing interesting features.
On 2 July 2012, the ATLAS collaboration published additional analyses of their 2011 data, excluding boson mass ranges of 111.4 GeV to 116.6 GeV, 119.4 GeV to 122.1 GeV, and 129.2 GeV to 541 GeV. They observed an excess of events corresponding to the Higgs boson mass hypotheses around 126 GeV with a local significance of 2.9 sigma.[53] On the same date, the DØ and CDF collaborations announced further analysis that increased their confidence. The significance of the excesses at energies between 115–140 GeV was now quantified as 2.9 standard deviations, corresponding to a 1 in 550 probability of being due to a statistical fluctuation. However, this still fell short of the 5 sigma confidence, therefore the results of the LHC experiments were necessary to establish a discovery. They excluded Higgs mass ranges at 100–103 and 147–180 GeV.[54][55]
On 22 June 2012 CERN announced an upcoming seminar covering tentative findings for 2012,[56][57] and shortly afterwards rumours began to spread in the media that this would include a major announcement, but it was unclear whether this would be a stronger signal or a formal discovery.[58][59] On 4 July 2012 CMS announced the discovery of a boson with mass 125.3 ± 0.6 GeV/c2 at a statistical significance of 4.9 sigma,[2] and ATLAS of a boson with mass 126.5 GeV/c2 at 5 sigma.[3] This meets the formal level required to announce a new particle which is "consistent with" the Higgs boson, but scientists have not positively identified it as being the Higgs boson, pending further data collection and analysis.[1]
Timeline of experimental evidence
- All results refer to the Standard Model Higgs boson, unless otherwise stated.
- 2000–2004 – using data collected before 2000, in 2003–2004 Large Electron–Positron Collider experiments published papers which set a lower bound for the Higgs boson of 114.4 GeV/c2 at the 95% confidence level (CL), with a small number of events around 115 GeV.[36]
- July 2010 – data from CDF (Fermilab) and DØ (Tevatron) experiments exclude the Higgs boson in the range 158–175 GeV/c2 at 95% CL.[42][43]
- 24 April 2011 – media reports "rumors" of a find;[60] these were debunked by May 2011.[61] They had not been a hoax, but were based on unofficial, unreviewed results.[62]
- 24 July 2011 – the LHC reported possible signs of the particle, the ATLAS Note concluding: "In the low mass range (c. 120–140 GeV) an excess of events with a significance of approximately 2.8 sigma above the background expectation is observed" and the BBC reporting that "interesting particle events at a mass of between 140 and 145 GeV" were found.[63][64] These findings were repeated shortly thereafter by researchers at the Tevatron with a spokesman stating that: "There are some intriguing things going on around a mass of 140GeV."[63] On 22 August 2011 it was reported that these anomalous results had become insignificant on the inclusion of more data from ATLAS and CMS and that the non-existence of the particle had been confirmed by LHC collisions to 95% certainty between 145–466 GeV (except for a few small islands around 250 GeV).[65]
- 23–24 July 2011 – Preliminary LHC results exclude the ranges 155–190 GeV/c2 (ATLAS)[46] and 149–206 GeV/c2 (CMS)[47] at 95% CL.
- 27 July 2011 – preliminary CDF/DØ results extend the excluded range to 156–177 GeV/c2 at 95% CL.[44]
- 18 November 2011 – a combined analysis of ATLAS and CMS data further narrowed the window for the allowed values of the Higgs boson mass to 114–141 GeV.[66]
- 13 December 2011 – experimental results were announced from the ATLAS and CMS experiments, indicating that if the Higgs boson exists, its mass is limited to the range 116–130 GeV (ATLAS) or 115–127 GeV (CMS), with other masses excluded at 95% CL. Observed excesses of events at around 124 GeV (CMS) and 125–126 GeV (ATLAS) are consistent with the presence of a Higgs boson signal, but also consistent with fluctuations in the background. The global statistical significances of the excesses are 1.9 sigma (CMS) and 2.6 sigma (ATLAS) after correction for the look elsewhere effect.[48][49]
- 22 December 2011 – the DØ collaboration also sets limits on Higgs boson masses within the Minimal Supersymmetric Standard Model (an extension of the Standard Model), with an upper limit for production ranging from 90 to 300 GeV, and excluding tanβ>20–30 for Higgs boson masses below 180 GeV at 95% CL.[51]
- 7 February 2012 – updating the December results, the ATLAS and CMS experiments constrain the Standard Model Higgs boson, if it exists, to the range 116–131 GeV and 115–127 GeV, respectively, with the same statistical significance as before.[67][68][69]
- 7 March 2012 – the DØ and CDF collaborations announced that they found excesses that might be interpreted as coming from a Higgs boson with a mass in the region of 115 to 135 GeV/c2 in the full sample of data from Tevatron. The significance of the excesses is quantified as 2.2 standard deviations, corresponding to a 1 in 250 probability of being due to a statistical fluctuation. This is a lower significance, but consistent with and independent of the ATLAS and CMS data at the LHC.[70][71] This new result also extends the range of Higgs-mass values excluded by the Tevatron experiments at 95% CL, which becomes 147-179 GeV/c2.[72][73]
- 2 July 2012 – the ATLAS collaboration further analysed their 2011 data, excluding Higgs mass ranges of 111.4 GeV to 116.6 GeV, 119.4 GeV to 122.1 GeV, and 129.2 GeV to 541 GeV. Higgs bosons are probably located at 126 GeV with significance of 2.9 sigma.[53] On the same day, the DØ and CDF collaborations also announced further analysis, increasing their confidence that the data between 115–140 GeV is corresponding to a Higgs boson to 2.9 sigma, excluding mass ranges at 100–103 and 147–180 GeV.[54][55]
- 4 July 2012 – the CMS collaboration "announces the discovery of a boson with mass 125.3 ± 0.6 GeV/c2 within 4.9 σ (sigma)" and the ATLAS collaboration announced that "we observe in our data clear signs of a new particle, at the level of 5 sigma, in the mass region around 126 GeV." These findings meet the formal level required to announce a new particle which is "consistent with" the Higgs boson, but scientists have not positively identified it as being the Higgs boson, pending further analysis.[1]
"God particle"
The Higgs boson is often referred to as the "God particle" by individuals outside the scientific community,[74] after the title of Leon Lederman's popular science book on particle physics, The God Particle: If the Universe Is the Answer, What Is the Question?[75][76] While use of this term may have contributed to increased media interest,[76] many scientists dislike it, since it is sensational and overstates the particle's importance. Its discovery would still leave unanswered questions about the unification of quantum chromodynamics, the electroweak interaction, and gravity, as well as the ultimate origin of the universe.[74][77] Higgs, an atheist himself, is displeased that the Higgs particle is nicknamed the "God particle",[78] because the term "might offend people who are religious".[79]Lederman said he gave it a nickname because the particle is "so central to the state of physics today, so crucial to our understanding of the structure of matter, yet so elusive,"[74][75][80] and added that he chose "the God particle" because "the publisher wouldn't let us call it the Goddamn Particle, though that might be a more appropriate title, given its villainous nature and the expense it is causing."[75]
A renaming competition conducted by the science correspondent for the British Guardian newspaper chose the name "the champagne bottle boson" as the best from among their submissions: "The bottom of a champagne bottle is in the shape of the Higgs potential and is often used as an illustration in physics lectures. So it's not an embarrassingly grandiose name, it is memorable, and [it] has some physics connection too."[81]
Source : http://en.wikipedia.org/wiki/Higgs_boson
No comments:
Post a Comment